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Abstract

Strong restrictions on the structure of a group G can be given, once that it
is known the probability that a randomly chosen pair of elements of a finite
group G commutes. Introducing the notion of mutually commuting n-tuples
for compact groups (not necessary finite), the present paper generalizes the
probability that a randomly chosen pair of elements of G commutes. We shall
state some results concerning this new concept of probability which has been
recently treated in [3]. Furthermore a relation has been found between the
notion of mutually commuting n-tuples and that of isoclinism between two
arbitrary groups.
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1 Introduction

Let G be a finite group, then the probability that a randomly chosen pair of
elements of G commutes is defined to be #com(G)/|G|2, where #com(G) is
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the number of pairs (x, y) ∈ G × G = G2 with xy = yx and will be briefly
denoted by cp(G). From [6], one may easily find that cp(G) = k(G)/|G|, where
k(G) is the number of conjugacy classes of G. So, there is no ambiguity to use
one or the other ratio in the universe of finite groups.

One way to generalize this probability is to consider n-tuples (x1, x2, . . . , xn)
of elements in a finite group G with the property that xixj = xjxi for all
1 ≤ i, j ≤ n. Such n-tuples are called mutually commuting n-tuples. So,
we may investigate the probability that randomly chosen ordered n-tuples of
the group elements are mutually commuting n-tuples which we denote it by
cpn(G). Note that for n = 2, this probability is exactly cp(G).

For infinite groups, this ratio is not longer meaningful. In this case, compact
groups with normalized Haar measure are good candidates for this procedure.
As the similar description given in [3], we can define cpn(G). If G is a compact
group with the normalized Haar measure µ, then it is possible to consider the
product measure µ × µ on the product measure space G × G (see [8,Sections
18.1, 18.2] or [9, Chapter 2]). It is clear that µ × µ is again a probability
measure. If

C2 = {(x, y) ∈ G×G | xy = yx},

then C2 = f−1(1G), where f : G × G → G is defined via f(x, y) = x−1y−1xy
and 1G denotes the neutral element of G. Obviously f is continuous and C2 is
a compact and measurable subset of G×G. Therefore it is possible to define

cp(G) = (µ× µ)(C2).

Similarly, with the above notations, we may define cpn(G) in a compact group
G, for all positive integers n ≥ 2, as the following. If µn = µ× µ× . . .× µ for
n-times, then

cpn(G) = µn(Cn),

where

Cn = {(x1, . . . , xn) ∈ Gn | xixj = xjxi for all 1 ≤ i, j ≤ n}.

Obviously if G is finite, then G is a compact group with the discrete topology
and so the Haar measure of G is the counting measure.

By the definitions it follows that for a compact group with a normalized
Haar measure

cpn(G) = µn(Cn) =
|Cn|
|G|n

which is the same as in the finite case.
From the point of view of the compact groups, many results of [1,2,3,5,6,7,11,13]

become special situations, since each finite group is trivially compact. In
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1970 in [5], it has been proved that if G is a non-abelian finite group, then
cp(G) ≤ 5/8; furthermore this bound is achieved if and only if G/Z(G) is
isomorphic to an elementary abelian 2-group of rank 2, where Z(G) denotes
the center of the group G. Later, the first author and R. Kamyabi-Gol have
extended this result in [3] to compact (not necessary finite, even uncount-
able) groups. For every non-abelian compact group G, they have proved that
G/Z(G) is isomorphic to an elementary abelian 2-group of rank 2 if and only
if

cpn(G) =
3(2n−1)− 1

22n−1

for all positive integers n ≥ 2.

The present paper aims to improve the result of A.Erfanian and R. Kamyabi-
Gol in two directions. First, we consider the case that G/Z(G) is isomorphic
to an elementary abelian p-group of rank 2, where p is a prime number and
secondly, the case that G/Z(G) is isomorphic to an elementary abelian p-group
of rank k, where k ≥ 2 is a positive integer. We will give the exact value of
cpn(G) in both cases. Furthermore, we shall state a relation between the con-
cept of isoclinism between groups (see [10]) and the above probability.

Our Main Theorems are :

Theorem A. Let G be a non-abelian compact group (not necessary finite)
and G/Z(G) be a p-group, where p is a prime. Then the following statements
are equivalent:

(i) G/Z(G) is an elementary abelian p-group of rank 2;

(ii) cpn(G) =
pn + pn−1 − 1

p2n−1
, where n ≥ 2 is a positive integer;

(iii) G is isoclinic to an extra-special p-group of order p3.

Theorem B. Let G be a non-abelian compact group, r ≥ 1 be a positive
integer and the index of CG(x) in G be a prime p for all x ∈ G\Z(G). Then
the following statements are equivalent:

(i) G/Z(G) is an elementary abelian p-group of rank k = 2r;
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(ii)

cpn(G) =
(p− 1)

∑n−2
i=0 p

i(k−1) + p(n−1)k−n+2

p(n−1)k+1
,

where n ≥ 2 is a positive integer;

(iii) G is isoclinic to an extra-special p-group of order pk+1.

Section 2 gives preliminary results which are necessary to prove Main The-
orems and Section 3 has been devoted to proof Main Theorems.

Most of our notation is standard and can be found in [9,13]. But, let us
recall to define isoclinism between two groups for convenience of the reader:

a pair (ϕ, ψ) is called an isoclinism of groups G and H if ϕ is an iso-
morphism from G/Z(G) to H/Z(H), ψ is also an isomorphism from G′ to H ′

and ψ([g1, g2]) = [h1, h2] whenever hi ∈ ϕ(giZ(G)), for all gi ∈ G, hi ∈ H,
i ∈ {1, 2}. See [10] for details.

2 Preliminaries

In this Section, G is assumed to be a non-abelian compact group (not nec-
essarily finite even uncountable) with normalized Haar measure µ. First, we
state the following simple lemmas.

Lemma 2.1. Let CG(x) be the centralizer of an element x in G. Then

cp(G) =
∫
G
µ(CG(x))dµ(x),

where µ(CG(x)) =
∫
G χC2

(x, y)dµ(y) and χ
C2

denotes the characteristic map
of the set C2.

Proof. Since µ(CG(x)) =
∫
G χC2

(x, y)dµ(y), we have by Fubini-Tonelli’s
Theorem:

cp(G) = (µ× µ)(C2) =
∫
G×G

χ
C2
d(µ× µ)

=
∫
G

∫
G
χ

C2
(x, y)dµ(x)dµ(y)

=
∫
G
µ(CG(x))dµ(x). ♦
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Lemma 2.2. Let H be a subgroup of G of finite index. Then

µ(H) = [G : H]−1.

Proof. Assume that [G : H] = k, where k is a positive integer. Then we
have

1 = µ(G) = µ(
k⋃

i=1

xiH) =
k∑

i=1

µ(xiH) = kµ(H). ♦

Let n be a positive integer. In the situation of the above lemma, we can eas-
ily see that if [G : H] ≥ n, then µ(H) ≤ 1/n. At the same way if [G : H] ≤ n,
then µ(H) ≥ 1/n .

Lemma 2.3. Let G/Z(G) be a p-group of order pr, where p is a prime
and r is a positive integer. An element x belongs to Z(G) if and only if
µ(CG(x)) > 1

pr−1 .

Proof. It is clear that if x ∈ Z(G) then CG(x) = G and therefore
µ(CG(x)) = 1 > 1

pr−1 . Conversely, assume that µ(CG(x)) > 1
pr−1 and x /∈ Z(G).

Then, it is obvious that [CG(x) : Z(G)] ≥ p and so we can see that

pr = [G : Z(G)] = [G : CG(x)][CG(x) : Z(G)] ≥ p[G : CG(x)] .

Thus, [G : CG(x)] ≤ pr−1 and it implies that µ(CG(x)) ≥ 1
pr−1 by Lemma

2.2, which is a contradiction. Hence, x ∈ Z(G) as required. ♦

Lemma 2.4. Let G/Z(G) be an elementary abelian p-group of rank 2, then

cpn(G) =
p2 + p− 1

p3
,

for every prime p.

Proof. Assume that G/Z(G) is an elementary abelian p-group of rank 2 .
Then we may write G as the union of p2 distinct cosets

G = Z(G) ∪ x1Z(G) ∪ x2Z(G) ∪ . . . ∪ xp2−1Z(G)

and so 1 = µ(G) = p2µ(Z(G)), since µ is a left Haar-measure.
If a, b ∈ xiZ(G), for 1 ≤ i ≤ p2 − 1, then a = xiz1 and b = xiz2 for some

z1, z2 ∈ Z(G) so that

ab = xiz1xiz2 = xixiz1z2 = xixiz2z1 = xiz2xiz1 = ba.
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Thus, if a ∈ xiZ(G), then CG(a) = Z(G) ∪ aZ(G) ∪ a2Z(G) ∪ . . . ∪ ap−1Z(G)
and so

µ(CG(a)) = µ(Z(G)) + µ(aZ(G)) + µ(a2Z(G)) + . . .+ µ(ap−1Z(G))

= pµ(Z(G)) = p(
1

p2
) =

1

p
.

Thus, we have

cp(G) =
∫
G µ(CG(x))dµ(x)

=
∫
Z(G) µ(CG(x))dµ(x) +

∑p2−1
i=1

∫
xiZ(G) µ(CG(x))dµ(x)

= µ(Z(G)) +
∑p2−1

i=1
1
p
µ(xiZ(G)) = (1

p
(p2 − 1) + 1)µ(Z(G))

= p2+p−1
p3

. ♦

The following result has independent relevance, because it furnishes a
bound for cpn(G).

Proposition 2.5. If p is a prime and G/Z(G) is a an elementary abelian
p-group of rank 2, then

cpn(G) =
pn + pn−1 − 1

p2n−1
.

Proof. We may proceed by induction on n. By using Fubini-Tonelli theorem
we can express cpn(G) as∫
G

[∫
Gn−1

χ
Cn−1

(x2, . . . , xn)χ
C2

(x1, x2) . . . χC2
(x1, xn)dµn−1(x1, . . . , xn)

]
dµ(x1).

We shall integrate separately over Z(G) and G \ Z(G). For the integration
over Z(G) we can use the induction assumption, and get µ(Z(G))cpn−1(G).
The integration over G \ Z(G) yeilds∫

G−Z(G)

[∫
CG(x1)n−1

χ
Cn−1

(x2, . . . , xn)dµn−1(x2, . . . , xn)

]
dµ(x1)

= µ(G− Z(G))µ(CG(x1))
n−1

Because x1 commutes with all x2, . . . , xn. Now, by summing both terms
together we obtain

1

p2

(
pn−1 + pn−2 − 1

p2n−3

)
+ (1− 1

p2
)(

1

p
)n−1 =

pn + pn−1 − 1

p2n−1
. ♦
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Lemma 2.6. If p is a prime and [G : Z(G)] = pk, then

cp(G) ≤ pk + p− 1

pk+1
,

for all integers k ≥ 2.

Proof. Since [G : Z(G)] = pk, so one can easily see that µ(Z(G)) = 1
pk

and µ(CG(a)) ≤ 1
p
, for all a ∈ G \ Z(G) by Lemma 2.3. Now, by Lemma 2.1

we have

cp(G) =
∫
Z(G)

µ(CG(x))dµ(x) +
p2−1∑
i=1

∫
xiZ(G)

µ(CG(x))dµ(x)

≤ µ(Z(G)) +
pk−1∑
i=1

1

p
µ(xiZ(G))

=
1

pk
+ (pk − 1)

1

pk+1
=
pk + p− 1

pk+1
. ♦

Proposition 2.7. Let p be a prime and k ≥ 2 be a positive integer. If the
index [G : Z(G)] = pk, then

cpn(G) ≤
(p− 1)

n−2∑
i=0

pi(k−1) + p(n−1)k−n+2

p(n−1)k+1

for all integers n ≥ 2. Furthermore, this bound is achieved if G/Z(G) is an
elementary abelian p-group of rank k and [G : CG(x)] = p for all x ∈ G\Z(G).

Proof. Suppose that k ≥ 2 and we proceed by induction on n. If n = 2,
then the proof is clear by Lemma 2.6. Now assume that the result holds for
n−1, then by the hypothesis induction and the similar arguments as the proof
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of Proposition 2.5, we have

cpn−1(G) = µ(Z(G))cpn−1(G) + (1− µ(Z(G))µ(CG(x1))
n−1

≤ 1

pk

(
(p− 1)

∑n−3
i=0 p

i(k−1) + p(n−2)k−n+3

p(n−2)k+1

)
+
pk − 1

pn+k−1

=
(p− 1)

∑n−3
i=0 p

i(k−1) + p(n−2)k−n+3 + p(n−1)k−n+2 − p(n−2)k−n+2

p(n−1)k+1

=
(p− 1)

∑n−3
i=0 p

i(k−1) + p(n−2)k−n+2(p− 1) + p(n−1)k−n+2

p(n−1)k+1

=
(p− 1)

∑n−2
i=0 p

i(k−1) + p(n−1)k−n+2

p(n−1)k+1
.

The second part of Proposition 2.7 comes from the fact that µ(CG(a)) = 1
p
,

for all a ∈ G \Z(G). Hence we should have equality in all above relations and
the proof is completed. ♦

3 Main Theorems

Proof of Theorem A. (i)⇒(ii). Assume that G/Z(G) is an elementary

abelian p-group of rank 2. Then Proposition 2.5 implies cpn(G) = pn+pn−1−1
p2n−1

and the statement follows.

(ii)⇒(i). Assume that cpn(G) =
pn + pn−1 − 1

p2n−1
and G/Z(G) is not an

elementary abelian p-group of rank 2. If [G : Z(G)] ∈ {1, p}, then G/Z(G) is
cyclic and so G is abelian which is a contradiction. Thus [G : Z(G)] > p2 and
therefore µ(Z(G)) < 1

p2
. Moreover, if x ∈ G \ Z(G) then µ(CG(x)) < 1

p
by

Lemma 2.3. Thus

cpn(G) = µ(Z(G))cpn−1(G) + (1− µ(Z(G))[µ(CG(x1))]
n−1

< µ(Z(G))

(
pn−1 + pn−2 − 1

p2n−3

)
+ (1− µ(Z(G)))(

1

p
)n−1

<
1

p2

(
pn−1 + pn−2 − 1

p2n−3

)
+ (1− 1

p2
)(

1

p
)n−1

=
pn + pn−1 − 1

p2n−1
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which is a contradiction and so (i) holds.
(i)⇒(iii). Assume that G/Z(G) is an elementary abelian p-group of rank 2

and H is an extra-special p-group of order p3. Thus |H ′| = |Z(H)| = |Φ(H)| =
p and this implies that H/Z(H) is an elementary abelian p-group of rank 2
. Hence G/Z(G) is isomorphic to H/Z(H). Moreover, |G′| = p by a famous
Wiegold’s bound (see [12, (3), vol.I, p.102]) and so G′ is isomorphic to H ′.
Now, one can easily check that the diagram which appears in the definition of
isoclinism between G and H is commutative. Hence G is isoclinic to H.

(iii)⇒(i). It is clear. ♦

Proof of Theorem B. (i)⇒(ii). If G/Z(G) is an elementary abelian p-
group of rank k, where k = 2r and r ≥ 1 is an integer, then by Proposition
2.5 and the fact that µ(Z(G)) = 1

pk
and µ(CG(x)) = 1

p
, for all x ∈ G \ Z(G)

we have

cpn(G) = µ(Z(G))cpn−1(G) + (1− µ(Z(G))[µ(CG(x1))]
n−1

=
1

pk

(
(p− 1)

∑n−3
i=0 p

i(k−1) + p(n−2)k−n+3

p(n−2)k+1

)
+
pk − 1

pn+k−1

=
(p− 1)

∑n−2
i=0 p

i(k−1) + p(n−1)k−n+2

p(n−1)k+1
.

(ii)⇒(i). Since [G : CG(x)] = p for all x ∈ G\Z(G),

µ(CG(x)) =
1

p
.

Moreover, from the equalities

cpn(G) = µ(Z(G))cpn−1(G) + (1− µ(Z(G)))[µ(C(x1))]
n−1

and

cpn(G) =
(p− 1)

∑n−2
i=0 p

i(k−1) + p(n−1)k−n+2

p(n−1)k+1

we deduce that

µ(Z(G)) =
1

pk
.
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Thus [G : Z(G)] = pk. We should note that G/Z(G) is an elementary abelian
p-group, because for each noncentral element x of G, the subgroup CG(x) is
normal of index p. So G modulo the intersection of these centralizers is ele-
mentary abelian.

(i)⇒(iii). Assume that G/Z(G) is a p-elementary abelian group of rank
k = 2r, where r ≥ 1 is an integer and H is an extra-special p-group of order
pk+1. Thus |H ′| = |Z(H)| = |Φ(H)| = p and this implies that H/Z(H) is
a p-elementary abelian of rank k. Hence G/Z(G) is isomorphic to H/Z(H).
Now, we claim that |G′| = p.

For every x ∈ G define the map

ϕx : t ∈ G 7−→ ϕx(t) = [x, t] ∈ G′.

Since G/Z(G) is abelian, G is nilpotent of class 2. Hence, we can easily see that
ϕx is a homomorphism and Kerϕx = CG(x). Moreover G/Kerϕx = G/CG(x)
is isomorphic to a subgroup Ix of G′. If x 6∈ Z(G) then |Ix| = p and so p ≤ |G′|.
If |G′| > p, then there exist elements x, y ∈ G\Z(G) such that Ix 6= Iy, Ix = 〈a〉
and Iy = 〈b〉. We may find the elements u, v ∈ G such that [x, u] = a and
[y, v] = b. Thus we have [x, v] ∈ Ix = 〈a〉, Iv = 〈b〉 and so [x, v] = 1. Similarly,
[y, u] = 1. Now it would imply that [xy, u] = [x, u] = a and so Ixy = 〈a〉. Also,
[xy, v] = [y, v] = b and therefore Ixy = 〈b〉. This is a contradiction. Hence
|G′| = p and so G′ is isomorphic to H ′. Finally, by the same method as in
the proof of Theorem A, we can show that the diagram which appears in the
definition of isoclinism between G and H is commutative. Hence G and H are
isoclinic.

(iii)⇒(i) It is clear. ♦
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