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ABSTRACT

There is a long line of research investigating upper central series of a group. The interest
comes from the information which these series can give on the structure of a group. Baer
(1952) extended the usual notion of center of a group, introducing that of p-centre, where
p is a prime. Almost 40 years later, Kappe and Newell (1989) were able to embed the
p-centre of a metabelian p-group in the p-th term of the upper central series. This was
possible because of the growing knowledge on Engel groups of the 60s years. Here we
extend the result of Kappe and Newell (1989) to wider classes of groups.
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1 Introduction and Statement of Results

Let G be a group, x1, . . . , xm ∈ G, m be a positive integer and w = w(x1, . . . , xm) be a word
on G. For an integer i between 1 and m and for an integer k 6= i between 1 and m, define the
following set

Z(G;w, i) = {a ∈ G : w(x1, . . . , xi−1, a, xi+1, . . . , xm) = 1,∀xk ∈ G}. (1.1)

We consider this construction by looking at some simple examples. Clearly, if w = [x1, x2], then
Z(G;w, i) is the centre Z(G) ofG for i = 1, 2. Similarly, ifw = [x1, x2, . . . , xm], then Z(G;w, 1) =
Zm−1(G) is the (m-1)-th term of the upper central series of G. In the case when w = [x1, kx2] is
the k-th Engel word, results of Baer (1952, 1953) show that for a finite group G, we have that
Z(G;w, 1) = Z∞(G) is the hypercentre of G and Z(G;w, 2) = Fitt(G) is the Fitting subgroup
for k large enough. In the case when w = x−n2 x−n1 (x1x2)

n, being n a positive integer, the group
Z(G;w, i) allows us to consider the n-centre Z(G,n) = Z(G;w, 1) ∩ Z(G;w, 2) introduced in
Baer (1952, 1953). All the ”centres” defined above are known to be (characteristic) subgroups
of G. Note that Z(G;w, i) is not necessarily a subgroup of G (i.e.: Z(G; [x, y, y], 2) is the set of
all left 2-Engel elements of G).

Following Baer (1952), two elements x, y in a group G n-commute if

(xy)n = xnyn and (yx)n = ynxn. (1.2)



A group is n-abelian if any two elements n-commute. Baer (1952) introduced the n-centre
Z(G,n) of a group G as the set of those elements which n-commute with every element in the
group. Therefore,

Z(G,n) = {x ∈ G : (xy)ny−nx−n = (yx)nx−ny−n = 1,∀y ∈ G}. (1.3)

The n-centre of a group has been intensively studied, as in Brandl (1987, 1991), Brandl et al.
(1989), Delizia et al. (2006, 2007), Kappe (1986, 1989), Kappe et al. (1988, 1989, 1990),
Kappe (1961), Levi (1942), Moravec (2006), Smith (1994), Tortora (2007). In particular, it is
known that Z(G,n) can be embedded, under certain conditions, in a suitable term of the upper
central series of G, cf. Kappe and Newell (1989, Theorems 4.3, 4.4, 5.1). For instance, we
have that Z(G, 3) ≤ Z3(G) for any group G, and Z(G, p) ≤ Zp(G) when G is a metabelian
p-group, where p is a prime.

Following Baer (1953), we say that a group G is n-hypercentral if it has a series

1 / Z(G,n) = Z1(G,n) / Z2(G,n) / . . . / Zj(G,n) / Zj+1(G,n) / . . . , (1.4)

where Zj+1(G,n)/Zj(G,n) = Z(G/Zj(G,n), n) for each j = 1, 2, . . . and

G =
⋃
j≥0

Zj(G,n). (1.5)

If there exists a positive integer c such that G = Zc(G,n), then G is said to be n-nilpotent of
class c.

Our main result is the following.

Main Theorem. Let G be a metabelian p-group, p be a prime and m be a positive integer. If
G is p-hypercentral, then G is hypercentral. Moreover, if G is p-nilpotent of class m, then it is
nilpotent of class at most mp.

Terminology and notations of the present article follow Baer (1952, 1953) and Robinson (1972).

2 Proof of Main Theorem

In the beginning we record some results of Kappe and Newell (1989) that will be used in the
proof of our main result. Before formulating the lemma, we define

Rn(G) = {x ∈ G : [x, ny] = 1,∀y ∈ G}

to be the set of right n-Engel elements of a group G.

Lemma 2.1. Let p be a prime and G be a metabelian group.

(i) If a ∈ Rn(G) is of order prime to n!, then a ∈ Zn+1(G).

(ii) If a ∈ Z2(G,n), then for all x ∈ G

[a, xn(1−n)]Z(G,n) = [an(1−n), x]Z(G,n) = [a, x]n(1−n)Z(G,n) = (2.1)



[an, x1−n]Z(G,n) = Z(G,n).

(iii) Assume that G is a p-group. If for all a, x ∈ G with apZ(G, p) ∈ Z(G/Z(G, p)) we have

p−1∏
i=1

[a,i x, p−1−i, a]Z(G, p) = Z(G, p), (2.2)

then
[a,s x, r−1, a]Z(G, p) = Z(G, p) (2.3)

for all positive integers r, s such that r + s ≥ p.

(iv) Assume that G is a p-group. If a ∈ Rp−1(G) and apZ(G, p) ∈ Z(G/Z(G, p)), then

[a, p−1−ix, i, a]Z(G, p) = Z(G, p) (2.4)

for i = 1, 2, . . . , p− 2 and all x ∈ G.

(v) Let u, v ∈ G and m be a positive integer. Then

[u, vm] =
m∏
i=1

[u, iv]
m!

i!(m−i)! ; (2.5)

(uv−1)m = um

 m∏
0≤i+j≤m

[u, iv, ju]
m!

(i+j+1)!(m−i−j−1)!

 v−m. (2.6)

(vi) Assume that G is a p-group. Then Z(G, p) ⊆ Zp(G).

Proof. This can be found in Kappe and Newell (1989).

Lemma 2.2. Let p be a prime and G be a metabelian p-group. Then

Z2(G, p) = {a ∈ R2p−1(G) : [a
p, x] ∈ Z(G, p), ∀x ∈ G} (2.7)

and Z2(G, p) ⊆ Z2p(G).

Proof. Application of (v) Lemma 2.1 with x, a ∈ G and m = p yields

(ax−1)pZ(G, p) = ap

 p∏
0≤i+j≤p

[a, ix, ja]
p!

(i+j+1)!(p−i−j−1)!

x−pZ(G, p). (2.8)

Assume that a is an element of order pα in Z2(G, p), where α is a positive integer. Then there
exist integers λ, µ such that λ(p− 1) + µpα−1 = 1. By (ii) Lemma 2.1, we obtain

[ap, x]Z(G, p) = [aλp(p−1)+µp
α
, x]Z(G, p) = [aλp(p−1), x]Z(G, p) = (2.9)

= [aλ, x]p(p−1)Z(G, p) = Z(G, p)



for all x ∈ G. Therefore apZ(G, p) ∈ Z(G/Z(G, p)) and ([a, x]Z(G, p))p = Z(G, p) so that (2.8)
reduces to

p−1∏
i=1

[a,i x, p−1−i, a]Z(G, p) = Z(G, p).

Applying Lemma 2.1 (iii), we deduce that each factor in the above product belongs to Z(G, p),
in particular [a, p−1x] ∈ Z(G, p). Now, Lemma 2.1 (vi) gives

[a, p−1x] ∈ Zp(G), (2.10)

then
[[[a, p−1x], x], x, . . . , x︸ ︷︷ ︸

(p−1)−times

] = [a, 2p−1x] = 1, (2.11)

and so a ∈ R2p−1(G). We deduce that

Z2(G, p) ⊆ {a ∈ R2p−1(G) : [a
p, x] ∈ Z(G, p),∀x ∈ G}. (2.12)

Conversely, assume a ∈ R2p−1(G) and [ap, x] ∈ Z(G, p), for all x ∈ G. Since G is a p-group,
Lemma 2.1 (i) yields a ∈ Z2p(G).Therefore,

Z(G, p) = [[ap, x], x1, . . . , x2p−1]Z(G, p) = [[a, x], x1, . . . , x2p−1]
pZ(G, p), (2.13)

for all x1Z(G, p), . . . , x2p−1Z(G, p) ∈ G/Z(G, p). By an inductive argument and the first part of
Lemma 2.1 (v), we obtain

[a, x1, . . . , xk]
pZ(G, p) = Z(G, p) (2.14)

for all x1Z(G, p), . . . , xkZ(G, p) ∈ G/Z(G, p) and k ≥ 1. Thus (2.8) reduces to

(ax−1)pZ(G, p) = ap
p−2∏
i=1

[a, ix, p−1−i, a]x
−pZ(G, p). (2.15)

Now we can apply Lemma 2.1 (iv) and obtain that each factor in the above product of commu-
tators belongs to Z(G, p). Hence (ax−1)pZ(G, p) = apx−pZ(G, p). Thus a ∈ Z2(G, p).
The fact that Z2(G, p) ⊆ R2p−1(G) together with G being a p-group implies that

Z2(G, p) ⊆ Z2p(G) (2.16)

by Lemma 2.1 (i).

Proposition 2.3. Let p be a prime and G is a metabelian p-group. Then

Zm(G, p) = {a ∈ Rm(p−1)(G) : [a
p, x] ∈ Zm−1(G, p), ∀x ∈ G} (2.17)

and Zm(G, p) ⊆ Zmp(G), where m is a positive integer.

Proof. We may repeat step by step the argument in the proof of Lemma 2.2. By induction, the
result follows.



Now we are in position to finish off the proof of our main result.

Proof. Assume that G is not abelian. Then we consider the upper central series of G. We
know that G =

⋃
λ<τ Zλ(G, p), where λ is an ordinal and τ is a limit ordinal. If G = Zτ (G, p),

then the result is obviously true.
Assume that λ is not a limit ordinal. Proposition 2.3 yields Zλ(G, p) ≤ Zλp(G) so that

G ⊆
⋃
λ<τ

Zλp(G). (2.18)

Then G =
⋃
λ<τ Zλp(G) and it is hypercentral of type λp. If G is p-nilpotent of class m, then

G = Zm(G, p) ⊆ Zmp(G), (2.19)

and so G = Zmp(G). The result follows.
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Kappe, W. P., 1961, Die A-Norm einer Gruppe, Illinois J. Math., 5, 187–197.

Levi, F. W., 1942, Groups in which the commutator operation satisfies certain al-
gebraic conditions, J. Indian Math. Soc., 6, 87–97.

Moravec, P., 2006, On power endomorphisms of n-central groups, J. Group The-
ory, 9, 519–536.

Robinson, D. J., 1972, Finiteness conditions and generalized soluble groups, Springer
Verlag, Berlin.

Smith, H., 1994, On homomorphic images of locally graded groups, Rend. Sem.
Mat. Univ. Padova, 91, 53–60.

Tortora, A., 2007, Some Properties of Bell Groups, Ph.D.Thesis, Mathematics De-
partment, University of Salerno, Salerno.


