DETECTING THE COMMUTING PROBABILITY OF THE DERIVED SUBGROUP

A. Erfanian

Department of Mathematics, Centre of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, Mashhad, Iran. E-mail: erfanian@math.um.ac.ir

F. Russo

Department of Mathematics, University of Naples Federico II, Naples, Italy. E-mail: francesco.russo@dma.unina.it

Abstract

There is a long standing line of research, which is devoted to investigate bounds for |G'| when G is an infinite group. This line goes back to a classic result of I. Schur. The present paper deals with the structure of G' when G is a compact group, showing that |G'| can be controlled by the notion of commuting probability.

2000 Mathematics Subject Classification. Primary: 20D60, 20P05; Secondary: 20D08.

Keywords. Commuting probability, compact group, *p*-elementary abelian groups of rank 2, derived subgroup.

1. Introduction

If G is a finite group, the probability that a randomly chosen pair of elements of G commutes is defined to be $\#com(G)/|G|^2$, where #com(G) is the number of pairs $(x, y) \in G \times G$ with xy = yx, G^2 is the product of two copies of G and $|G|^2$ is the order of G^2 . Note that this ratio is denoted by cp(G) = k(G)/|G|in [1, 3, 5, 10] where k(G) is the number of the conjugacy classes of G. See also [2, 4, 7]. More precisely, if G is a finite group,

$$cp(G) = \frac{|\{(x_1, x_2) \in G^2 ; x_i x_j = x_j x_i \text{ for all } 1 \le i, j \le 2\}|}{|G|^2}.$$

If G is a non-abelian group, then $cp(G) \leq 5/8$; furthermore this bound is achieved if and only if G/Z(G) has order 4, where Z(G) is the center of G. Such a result can be found in [5].

The ratio cp(G) has been extended to a compact group G already in [5, Section 2], defining $cp(G) = (\mu \times \mu)(C)$, where $C = \{(x, y) \in G^2 \mid xy = yx\}$, $f : (x, y) \in G^2 \rightarrow [x, y] \in G$, $C = f^{-1}(1)$ and μ is the normalized Haar measure on G. Note that C is measurable, since it is the anti-image of the closed set $\{1\}$ under the map f which is continuous (see [5, Section 2]). These information and the properties of the Haar measure on G guarantee that cp(G)is well–defined (see also [6, Chapter 2]). Obviously, if G is finite, then it is a compact group with the discrete topology and so the Haar measure on G is the counting measure. Most of the results in [1, 3, 4, 5, 7, 10] can be seen in such a way. We list now our main results. Section 2 will allow us to prove them in Section 3.

Theorem A. Let G be a non-abelian connected compact group, $Z_0(G)$ be the identity component of Z(G) and $G/Z_0(G)$ be a p-group, where p is a prime. Then the following statements are equivalent:

- (i) $G/Z_0(G)$ is a p-elementary abelian group of rank 2;
- (ii) G' is a p-elementary abelian group of rank 2;
- (iii) $cp(G) = \frac{p^2 + p 1}{p^3}$.

Theorem B. Let G be a non-abelian compact group, sol(G/Z(G)) be the soluble radical of G/Z(G), F(G/Z(G)) be the Fitting subgroup of G/Z(G), d be the maximum number of elements in a conjugacy class of G, l be the derived length of G/Z(G), p be a prime and n, m be positive integers.

- (i) If |G/Z(G)| = n, then $d^{-\frac{1}{2}(1+\log_2 d)} \le |G'|^{-1} < cp(F(G/Z(G)))^{\frac{1}{2}}|G/Z(G) : F(G/Z(G))|^{-\frac{1}{2}} \le |G/Z(G) : F(G/Z(G))|^{-\frac{1}{2}}$.
- (ii) If G/Z(G) is soluble of order n, then $d^{-\frac{1}{2}(1+\log_2 d)} \le |G'|^{-1} < \log_2(|G/Z(G) : sol(G/Z(G))|)^{-\frac{1}{3}}$.
- (iii) If |G/Z(G)| = n, then $d^{-\frac{1}{2}(1+\log_2 d)} \le |G'|^{-1} < |G/Z(G) : sol(G/Z(G))|^{-\frac{1}{2}}$.
- (iv) If G/Z(G) is finite soluble with $l \ge 4$, then $d^{-\frac{1}{2}(1+\log_2 d)} \le |G'|^{-1} < \frac{4l-7}{2^{l+1}}$.
- (v) If $|G/Z(G)| = p^m$, then $p^{-\frac{1}{2}m(m-1)} \le |G'|^{-1} < \frac{p^l + p^{l-1} 1}{p^{2l-1}}$.

2. Preliminaries

In this section, G is assumed to be a non-abelian compact group (not necessarily finite even uncountable) with normalized Haar measure μ .

Lemma 2.1. Let $C_G(x)$ be the centralizer of an element x in G. Then

$$cp(G) = \int_G \mu(C_G(x))d\mu(x),$$

where $\mu(C_G(x)) = \int_G \chi_C(x, y) d\mu(y)$ and χ_C denotes the characteristic map of the set C.

Proof. See [2, Lemma 3.1]. \diamondsuit

Lemma 2.2. Let H be a closed subgroup of G, n, r be positive integers and p be a prime.

- (i) If $|G:H| \ge n$, then $\mu(H) \le \frac{1}{n}$.
- (ii) If $|G:H| \le n$, then $\mu(H) \ge \frac{1}{n}$.
- (iii) Assume that G/Z(G) is a p-group of order p^r . An element x belongs to Z(G) if and only if $\mu(C_G(x)) > \frac{1}{p}$.

Proof. See [2, Lemmas 3.2, 3.4]. \diamond

Lemma 2.3. Let r be a positive integer. If G/Z(G) is a p-elementary abelian group of rank r, then $cp(G) \leq \frac{p^r+p-1}{p^{r+1}}$, for every prime p. The equality holds when r = 2.

Proof. Assume that G/Z(G) is a *p*-elementary abelian group of rank r. By Lemma 2.1 and Lemma 2.2, we have

$$cp(G) = \int_{G} \mu(C_{G}(x))d\mu(x) = \int_{G-Z(G)} \mu(C_{G}(x))d\mu(x) + \mu(Z(G))$$

$$\leq \frac{1}{p}(\mu(G) - \mu(Z(G))) + \mu(Z(G)) = \frac{1}{p}(1 - \frac{1}{p^{r}}) + \frac{1}{p^{r}} = \frac{p^{r} + p - 1}{p^{r+1}}$$

If r = 2, then G is the union of p^2 distinct cosets

$$G = Z(G) \cup x_1 Z(G) \cup x_2 Z(G) \cup \ldots \cup x_{p^2 - 1} Z(G)$$

and so $1 = \mu(G) = p^2 \mu(Z(G))$. Moreover, if $a, b \in x_i Z(G)$, for $1 \le i \le p^2 - 1$, then $a = x_i z_1$ and $b = x_i z_2$ for some $z_1, z_2 \in Z(G)$ so that

$$ab = x_i z_1 x_i z_2 = x_i x_i z_1 z_2 = x_i x_i z_2 z_1 = x_i z_2 x_i z_1 = ba.$$

A. Erfanian and F. Russo

Thus, if $a \in x_i Z(G)$, then $C_G(a) = Z(G) \cup aZ(G) \cup a^2 Z(G) \cup \ldots \cup a^{p-1}Z(G)$ and so

$$\mu(C_G(a)) = \mu(Z(G)) + \mu(aZ(G)) + \mu(a^2Z(G)) + \dots + \mu(a^{p-1}Z(G))$$

= $p\mu(Z(G)) = p(\frac{1}{p^2}) = \frac{1}{p}$

Thus, we have

$$cp(G) = \int_{G} \mu(C_{G}(x))d\mu(x)$$

= $\int_{Z(G)} \mu(C_{G}(x))d\mu(x) + \sum_{i=1}^{p^{2}-1} \int_{x_{i}Z(G)} \mu(C_{G}(x))d\mu(x)$
= $\mu(Z(G)) + \frac{1}{p} \sum_{i=1}^{p^{2}-1} \mu(Z(G)) = (\frac{1}{p}(p^{2}-1)+1)\mu(Z(G))$
= $\frac{p^{2}+p-1}{p^{3}}$.

Proposition 2.4. Let N be a closed normal subgroup of G. Then

$$cp(G) \le cp(G/N).$$

In particular, if $N \cap G' = 1$, then the equality holds.

Proof. Let λ , μ and ν be the corresponding Haar measure of N, G and G/N respectively. Let $x \in G$, $y \in N$ and $xN \in G/N$. The integral properties of the Haar measure on G allow us to write

$$\int_{G} \mu(C_G(x)) d\mu(x) = \int_{G/N} \left(\int_{N} \mu(C_G(xy)) d\lambda(y) \right) d\nu(xN).$$

Since ν is a Haar measure on G/N, ν acts on G/N as μ on G modulo N so that $\mu(C_G(xy)N) = \nu(C_G(xy)N/N)$. But in general $C_G(xy)N/N \leq C_{G/N}(xN)$, so that $\nu(C_G(xy)N/N) \leq \nu(C_{G/N}(xN))$ being ν monotone.

Then, $\mu(C_G(xy)N) = \nu(C_G(xy)N/N) \leq \nu(C_{G/N}(xN))$ and, from Lemma 2.1, we have

$$cp(G) = (\mu \times \mu)(C)$$

= $\int_{G} \mu(C_{G}(x))d\mu(x) = \int_{G/N} \left(\int_{N} \mu(C_{G}(xy))d\lambda(y) \right) d\nu(xN)$
 $\leq \int_{G/N} \left(\int_{N} \mu(C_{G}(xy)N)d\lambda(y) \right) d\nu(xN)$
 $\leq \int_{G/N} \left(\int_{N} \nu(C_{G/N}(xN))d\lambda(y) \right) d\nu(xN)$
= $\int_{G/N} \nu(C_{G/N}(xN)) \left(\int_{N} d\lambda(y) \right) d\nu(xN)$
= $\int_{G/N} \nu(C_{G/N}(xN)) d\nu(xN) = cp(G/N).$

In particular, if $N \cap G' = 1$, then $C_G(xy) = C_G(xy)N$ and so $\mu(C_G(xy)) = \mu(C_G(xy)N)$. Furthermore, $\mu(C_G(xy)N) = \nu((C_G(xy)N)/N) = \nu(C_{G/N}(xN))$. So, the equality holds. \diamond

Recall from [6] that G_0 denotes the *identity component* of G. In particular, $Z_0(G)$ denotes the identity component of Z(G).

Lemma 2.5. If G is connected, then $\mu(G') = \mu(G/Z_0(G))$.

Proof. From [6, Theorem 9.24 (ii)], $G = Z_0(G)G'$ and $Z_0(G) \cap G'$ is totally disconnected. We conclude that

$$\mu(G) = \mu(Z_0(G)G') = \mu(Z_0(G)) + \mu(G') - \mu(Z_0(G) \cap G')$$

Since $Z_0(G) \cap G'$ is totally disconnected, $\mu(Z_0(G) \cap G') = 0$, and so

$$\mu(G') = \mu(G) - \mu(Z_0(G)) = \mu(G/Z_0(G)).$$

The proof of Lemma 2.5 uses [6, Theorem 9.24 (ii)] which is a fundamental result in the Theory of Compact Groups. Moreover it allows us to have a precise control of the measure of G' as the following remark shows.

Remark 2.6. From [6, Theorem 9.24 (ii)], if we have a non-abelian compact group G, then there exists a family $\{S_j : j \in J\}$ of simple connected compact Lie groups and a totally disconnected central subgroup D of $Z_0(G) \times \prod_{j \in J} S_j$ such that $G \cong \frac{Z_0(G) \times \prod_{j \in J} S_j}{D}$. Since D is totally disconnected, $\mu(D) = 0$, and so $\mu(G)$ is equal to

$$\mu\Big(\frac{Z_0(G) \times \prod_{j \in J} S_j}{D}\Big) = (\mu(Z_0(G)) + \mu(\prod_{j \in J} S_j)) - \mu(D) = \mu(Z_0(G)) + \mu(\prod_{j \in J} S_j).$$

By Lemma 2.5, $\mu(G') = \mu(G/Z_0(G)) = \mu(\prod_{j \in J} S_j).$

The following lemma adapts [4, Lemma 2 (vi)].

Lemma 2.7. Let G be a non-abelian compact group with |G : Z(G)| = n, where n is a positive integer. Then $|G'|^{-1} < cp(G)$.

Proof. A famous bound of Wiegold (see [8, p.102 (2)]) shows that, if |G:Z(G)| is finite, then |G'| is finite as well. Now, we can easily observe that the length of every conjugacy class is bounded above by the order of derived subgroup G' for every element $x \in G$. This means $|G:C_G(x)| \leq |G'|$ for all

 $x \in G$. By Lemma 2.2, $\mu(C_G(x)) \ge |G'|^{-1}$ for each element $x \in G$. Moreover, if |G: Z(G)| = n, then we may write G as the union of n distinct cosets

$$G = Z(G) \cup x_1 Z(G) \cup x_2 Z(G) \cup \ldots \cup x_{n-1} Z(G)$$

and so $\mu(Z(G)) = 1/n$. Thus we will have

$$cp(G) = \int_{G} \mu(C_{G}(x))d\mu(x) = \int_{Z(G)} \mu(C_{G}(x))d\mu(x) + \int_{x_{1}Z(G)} \mu(C_{G}(x))d\mu(x) + \dots + \int_{x_{n-1}Z(G)} \mu(C_{G}(x))d\mu(x) = \mu(Z(G)) + \sum_{i=1}^{n-1} \int_{x_{i}Z(G)} \mu(C_{G}(x))d\mu(x)$$

$$\geq \frac{1}{n} + \sum_{i=1}^{n-1} \int_{x_{i}Z(G)} |G'|^{-1}d\mu(x) > \frac{1}{n}|G'|^{-1} + \frac{n-1}{n}|G'|^{-1} = |G'|^{-1}.$$

3. Proofs of Theorems A and B

This Section contains our main results with some instructive examples.

Proof of Theorem A. (i) \Rightarrow (ii). From [6, Theorem 9.24], $G = Z_0(G)G'$ so that G' is isomorphic as compact group to $G/Z_0(G)$. Now the property to be a *p*-elementary abelian group of rank 2 is invariant under isomorphisms of compact groups. Then the result follows.

(ii) \Rightarrow (iii). Again from [6, Theorem 9.24] we have that G' is isomorphic to $G/Z_0(G)$ and so $G/Z_0(G)$ is a *p*-elementary abelian group of rank 2. Since $Z_0(G) \leq Z(G)$ and the class of *p*-elementary abelian groups is closed with respect to forming subgroups, images and extensions of its members (see [8]), we conclude that G/Z(G) is a *p*-elementary abelian group of rank 2. Now Lemma 2.3 gives the required bound.

(iii) \Rightarrow (i). Assume that $cp(G) = \frac{p^2+p-1}{p^3}$ and $G/Z_0(G)$ is not a *p*-elementary abelian group of rank 2. By assumption $G/Z_0(G)$ is a *p*-group. So, if $G/Z_0(G)$ has order 1 or *p*, then it is cyclic. Since $Z_0(G) \leq Z(G)$, also G/Z(G) is cyclic. It follows that *G* is abelian and there is a contradiction. Thus $|G : Z_0(G)| \geq p^2$. If $|G : Z_0(G)| = p^2$, then $G/Z_0(G)$ is an abelian of order p^2 and it is either cyclic of order p^2 or a *p*-elementary abelian group of rank 2. In the first case we obtain again a contradiction and in the second case we finish. Now suppose that $|G: Z_0(G)| > p^2$. Using [6, Theorem 9.24 (ii)] and Lemma 2.5, we have

$$cp(G) = \int_{G} \mu(C_{G}(x))d\mu(x) = \int_{Z_{0}(G)G'} \mu(C_{G}(x))d\mu(x)$$

$$= \int_{Z_{0}(G)} \mu(C_{G}(x))d\mu(x) + \int_{G'} \mu(C_{G}(x))d\mu(x) - \int_{G'\cap Z_{0}(G)} \mu(C_{G}(x))d\mu(x)$$

$$= \int_{Z_{0}(G)} \mu(C_{G}(x))d\mu(x) + \int_{G'} \mu(C_{G}(x))d\mu(x)$$

$$= \int_{Z_{0}(G)} \mu(C_{G}(x))d\mu(x) + \int_{G'\setminus Z_{0}(G)} \mu(C_{G}(x))d\mu(x)$$

$$\leq \mu(Z_{0}(G)) + (\mu(G') - \mu(Z_{0}(G))) = \mu(G') = \mu(G/Z_{0}(G)).$$

But $Z_0(G)$ is a closed normal subgroup of G with $|G : Z_0(G)| > p^2$, then Lemma 2.2 implies $\mu(G/Z_0(G)) < \frac{1}{p^2}$. Now the relation $\frac{p^2+p-1}{p^3} < \frac{1}{p^2}$ gives a contradiction and the result follows. \diamondsuit

Proof of Theorem B. The finiteness of G/Z(G) implies the finiteness of G' by a famous Schur's Lemma (see [8, Theorem 4.12]), so there are no problems to consider the maximum number of elements in a conjugacy class of G [8, Theorem 4.35].

Lemma 2.7, combined with [4, Theorem 4 (ii)] and Proposition 2.4, implies

$$|G'|^{-1} < cp(G) < cp(G/Z(G)) \leq$$

$$cp(F(G/Z(G)))^{\frac{1}{2}}|G/Z(G):F(G/Z(G))|^{-\frac{1}{2}} \le |G/Z(G):F(G/Z(G))|^{-\frac{1}{2}}.$$

On the other hand, the bound of Wiegold [8, Chapter 4, p.126-127] gives

(*)
$$d^{-\frac{1}{2}(1+\log_2 d)} \le |G'|^{-1},$$

then (i) is proved.

Lemma 2.7, combined with [4, Theorem 8 (i)] and Proposition 2.4, gives

$$|G'|^{-1} < cp(G) < cp(G/Z(G)) < log_2(|G/Z(G): sol(G/Z(G))|)^{-\frac{1}{3}}.$$

As before we use (*) and (ii) follows.

Lemma 2.7, combined with [4, Theorem 9] and Proposition 2.4, gives

$$|G'|^{-1} < cp(G) < cp(G/Z(G)) \le |G/Z(G): sol(G/Z(G))|^{-\frac{1}{2}}.$$

1

As before we use (*) and (iii) follows.

Lemma 2.7, combined with [4, Theorem 12 (i)] and Proposition 2.4, gives

$$|G'|^{-1} < cp(G) < cp(G/Z(G)) \le \frac{4l - 7}{2^{l+1}}.$$

As before we use (*) and (iv) follows.

Lemma 2.7, combined with [4, Theorem 12 (ii)] and Proposition 2.4, gives

$$|G'|^{-1} < cp(G) < cp(G/Z(G)) \le \frac{p^l + p^{l-1} - 1}{p^{2l-1}}.$$

Now the bound [8, p.102] gives

(**)
$$p^{-\frac{1}{2}m(m-1)} \le |G'|^{-1},$$

then (v) follows. \diamond

The conditions (*) and (**) in the proof of Theorem B are classical restrictions on |G'| (see [9]) of an infinite group G. Recent developments can be found in literature: for instance, [9] improves (*) using techniques of Combinatorial Group Theory (see [9, Theorems 1.1, 1.3, 1.4]). The same authors of [9] have continued to improve these bounds during the last twenty years.

Example 3.1. Let *n* be a positive integer and $G = E \times \mathbb{T}^n$, where \mathbb{T}^n is the *n*-dimensional torus group and *E* is a finite non-abelian group. See [6, pp.11–17] and [6, Proposition 2.42] for details. Of course, *G* is a compact group and if we know cp(E), then $cp(G) = cp(E)cp(\mathbb{T}^n) = cp(E)$ by an application of Lemma 2.1. This means that informations on cp(G) can be deduced from those on cp(E). Note that cp(E) is well known by [1, 3, 4, 5, 7, 10], since *E* is a finite group. This construction gives a source of examples both for Theorem A and Theorem B. \diamond

References

- 1. P. Erdös and P. Turan, On some problems of statistical group theory, Acta Math. Acad. Sci. Hung. 19 (1968), 413–435.
- A. Erfanian and R. Kamyabi-Gol, On the mutually n-tuples in compact groups, Int. J. Algebra (6) Vol. 1 (2007), 251–262.
- P. X. Gallagher, The number of conjugacy classes in a finite group, Math. Z. 118 (1970), 175–179.

- R. M. Guralnick and G. R. Robinson, On the commuting probability in finite groups, J. Algebra 300 (2006), 509–528.
- 5. W. H. Gustafson, What is the probability that two groups elements commute?, *Amer. Math. Monthly* **80** (1973), 1031–1034.
- K. H. Hofmann, and S. A. Morris, *The Structure of Compact Groups*, de Gruyter, Berlin, New York, 1998.
- M. S. Lucido and M. R. Pournaki, Elements with Square Roots in Finite Groups, Algebra Colloq. 12 (2005), 677–690.
- D. J. Robinson, *Finiteness conditions and generalized soluble groups*, vol. I and vol.II, Springer Verlag, Berlin, 1972.
- 9. D. Segal and A. Shalev, On groups with bounded conjugacy classes, Quart. J. Math. Oxford (2), 50 (1999), 505–516.
- 10. G. J. Sherman, What is the probability an automorphism fixes a group element?, *Amer. Math. Monthly* 82 (1975), 261-264.

Received: Month xx, 200x