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Abstract

There is a long standing line of research, which is devoted to investi-
gate bounds for |G′| when G is an infinite group. This line goes back to
a classic result of I. Schur. The present paper deals with the structure
of G′ when G is a compact group, showing that |G′| can be controlled
by the notion of commuting probability.
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1. Introduction

If G is a finite group, the probability that a randomly chosen pair of elements
of G commutes is defined to be #com(G)/|G|2, where #com(G) is the number
of pairs (x, y) ∈ G×G with xy = yx, G2 is the product of two copies of G and
|G|2 is the order of G2. Note that this ratio is denoted by cp(G) = k(G)/|G|
in [1, 3, 5, 10] where k(G) is the number of the conjugacy classes of G. See
also [2, 4, 7]. More precisely, if G is a finite group,

cp(G) =
|{(x1, x2) ∈ G2 ; xixj = xjxi for all 1 ≤ i, j ≤ 2}|

|G|2
.
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If G is a non-abelian group, then cp(G) ≤ 5/8; furthermore this bound is
achieved if and only if G/Z(G) has order 4, where Z(G) is the center of G.
Such a result can be found in [5].

The ratio cp(G) has been extended to a compact group G already in [5,
Section 2], defining cp(G) = (µ × µ)(C), where C = {(x, y) ∈ G2 | xy = yx},
f : (x, y) ∈ G2 → [x, y] ∈ G, C = f−1(1) and µ is the normalized Haar
measure on G. Note that C is measurable, since it is the anti-image of the
closed set {1} under the map f which is continuous (see [5, Section 2]). These
information and the properties of the Haar measure on G guarantee that cp(G)
is well–defined (see also [6, Chapter 2]). Obviously, if G is finite, then it is a
compact group with the discrete topology and so the Haar measure on G is
the counting measure. Most of the results in [1, 3, 4, 5, 7, 10] can be seen in
such a way. We list now our main results. Section 2 will allow us to prove
them in Section 3.

Theorem A. Let G be a non-abelian connected compact group, Z0(G) be
the identity component of Z(G) and G/Z0(G) be a p-group, where p is a prime.
Then the following statements are equivalent:

(i) G/Z0(G) is a p-elementary abelian group of rank 2;

(ii) G′ is a p-elementary abelian group of rank 2;

(iii) cp(G) = p2+p−1
p3

.

Theorem B. Let G be a non-abelian compact group, sol(G/Z(G)) be the
soluble radical of G/Z(G), F (G/Z(G)) be the Fitting subgroup of G/Z(G), d
be the maximum number of elements in a conjugacy class of G, l be the derived
length of G/Z(G), p be a prime and n,m be positive integers.

(i) If |G/Z(G)| = n, then d−
1
2
(1+log2d) ≤ |G′|−1 < cp(F (G/Z(G)))

1
2 |G/Z(G) :

F (G/Z(G))|− 1
2 ≤ |G/Z(G) : F (G/Z(G))|− 1

2 .

(ii) If G/Z(G) is soluble of order n, then d−
1
2
(1+log2d) ≤ |G′|−1 < log2(|G/Z(G) :

sol(G/Z(G))|)− 1
3 .

(iii) If |G/Z(G)| = n, then d−
1
2
(1+log2d) ≤ |G′|−1 < |G/Z(G) : sol(G/Z(G))|− 1

2 .

(iv) If G/Z(G) is finite soluble with l ≥ 4, then d−
1
2
(1+log2d) ≤ |G′|−1 < 4l−7

2l+1 .

(v) If |G/Z(G)| = pm, then p−
1
2
m(m−1) ≤ |G′|−1 < pl+pl−1−1

p2l−1 .
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2. Preliminaries

In this section, G is assumed to be a non-abelian compact group (not neces-
sarily finite even uncountable) with normalized Haar measure µ.

Lemma 2.1. Let CG(x) be the centralizer of an element x in G. Then

cp(G) =

∫
G

µ(CG(x))dµ(x),

where µ(CG(x)) =
∫
G
χ

C
(x, y)dµ(y) and χ

C
denotes the characteristic map of

the set C.

Proof. See [2, Lemma 3.1]. ♦

Lemma 2.2. Let H be a closed subgroup of G, n, r be positive integers
and p be a prime.

(i) If |G : H| ≥ n, then µ(H) ≤ 1

n
.

(ii) If |G : H| ≤ n, then µ(H) ≥ 1

n
.

(iii) Assume that G/Z(G) is a p-group of order pr. An element x belongs to
Z(G) if and only if µ(CG(x)) > 1

p
.

Proof. See [2, Lemmas 3.2, 3.4]. ♦

Lemma 2.3. Let r be a positive integer. If G/Z(G) is a p-elementary
abelian group of rank r, then cp(G) ≤ pr+p−1

pr+1 , for every prime p. The equality
holds when r = 2.

Proof. Assume that G/Z(G) is a p-elementary abelian group of rank r .
By Lemma 2.1 and Lemma 2.2, we have

cp(G) =
∫
G
µ(CG(x))dµ(x) =

∫
G−Z(G)

µ(CG(x))dµ(x) + µ(Z(G))

≤ 1
p
(µ(G)− µ(Z(G))) + µ(Z(G)) = 1

p
(1− 1

pr
) + 1

pr
= pr+p−1

pr+1

If r = 2, then G is the union of p2 distinct cosets

G = Z(G) ∪ x1Z(G) ∪ x2Z(G) ∪ . . . ∪ xp2−1Z(G)

and so 1 = µ(G) = p2µ(Z(G)). Moreover, if a, b ∈ xiZ(G), for 1 ≤ i ≤ p2 − 1,
then a = xiz1 and b = xiz2 for some z1, z2 ∈ Z(G) so that

ab = xiz1xiz2 = xixiz1z2 = xixiz2z1 = xiz2xiz1 = ba.
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Thus, if a ∈ xiZ(G), then CG(a) = Z(G) ∪ aZ(G) ∪ a2Z(G) ∪ . . . ∪ ap−1Z(G)
and so

µ(CG(a)) = µ(Z(G)) + µ(aZ(G)) + µ(a2Z(G)) + . . .+ µ(ap−1Z(G))

= pµ(Z(G)) = p( 1
p2

) = 1
p

Thus, we have

cp(G) =
∫
G
µ(CG(x))dµ(x)

=
∫
Z(G)

µ(CG(x))dµ(x) +
∑p2−1

i=1

∫
xiZ(G)

µ(CG(x))dµ(x)

= µ(Z(G)) + 1
p

∑p2−1
i=1 µ(Z(G)) = (1

p
(p2 − 1) + 1)µ(Z(G))

= p2+p−1
p3

. ♦

Proposition 2.4. Let N be a closed normal subgroup of G. Then

cp(G) ≤ cp(G/N).

In particular, if N ∩G′ = 1, then the equality holds.

Proof. Let λ, µ and ν be the corresponding Haar measure of N , G and
G/N respectively. Let x ∈ G, y ∈ N and xN ∈ G/N . The integral properties
of the Haar measure on G allow us to write∫

G

µ(CG(x))dµ(x) =

∫
G/N

(∫
N

µ(CG(xy))dλ(y)

)
dν(xN).

Since ν is a Haar measure on G/N , ν acts on G/N as µ on G modulo N so that
µ(CG(xy)N) = ν(CG(xy)N/N). But in general CG(xy)N/N ≤ CG/N(xN), so
that ν(CG(xy)N/N) ≤ ν(CG/N(xN)) being ν monotone.

Then, µ(CG(xy)N) = ν(CG(xy)N/N) ≤ ν(CG/N(xN)) and, from Lemma
2.1, we have

cp(G) = (µ× µ)(C)

=
∫
G
µ(CG(x))dµ(x) =

∫
G/N

(∫
N
µ(CG(xy))dλ(y)

)
dν(xN)

≤
∫
G/N

(∫
N
µ(CG(xy)N)dλ(y)

)
dν(xN)

≤
∫
G/N

(∫
N
ν(CG/N(xN))dλ(y)

)
dν(xN)

=
∫
G/N

ν(CG/N(xN))
(∫

N
dλ(y)

)
dν(xN)

=
∫
G/N

ν(CG/N(xN))dν(xN) = cp(G/N).
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In particular, if N ∩ G′ = 1, then CG(xy) = CG(xy)N and so µ(CG(xy)) =
µ(CG(xy)N). Furthermore, µ(CG(xy)N) = ν((CG(xy)N)/N) = ν(CG/N(xN)).
So, the equality holds. ♦

Recall from [6] that G0 denotes the identity component of G. In particular,
Z0(G) denotes the identity component of Z(G).

Lemma 2.5. If G is connected, then µ(G′) = µ(G/Z0(G)).

Proof. From [6, Theorem 9.24 (ii)], G = Z0(G)G′ and Z0(G)∩G′ is totally
disconnected. We conclude that

µ(G) = µ(Z0(G)G′) = µ(Z0(G)) + µ(G′)− µ(Z0(G) ∩G′)

Since Z0(G) ∩G′ is totally disconnected, µ(Z0(G) ∩G′) = 0, and so

µ(G′) = µ(G)− µ(Z0(G)) = µ(G/Z0(G)). ♦

The proof of Lemma 2.5 uses [6, Theorem 9.24 (ii)] which is a fundamental
result in the Theory of Compact Groups. Moreover it allows us to have a
precise control of the measure of G′ as the following remark shows.

Remark 2.6. From [6, Theorem 9.24 (ii)], if we have a non-abelian
compact group G, then there exists a family {Sj : j ∈ J} of simple con-
nected compact Lie groups and a totally disconnected central subgroup D of

Z0(G)×
∏

j∈J Sj such that G ∼= Z0(G)×
∏

j∈J Sj

D
. Since D is totally disconnected,

µ(D) = 0, and so µ(G) is equal to

µ
(Z0(G)×

∏
j∈J Sj

D

)
= (µ(Z0(G))+µ(

∏
j∈J

Sj))−µ(D) = µ(Z0(G))+µ(
∏
j∈J

Sj).

By Lemma 2.5, µ(G′) = µ(G/Z0(G)) = µ(
∏

j∈J Sj).♦

The following lemma adapts [4, Lemma 2 (vi)].

Lemma 2.7. Let G be a non-abelian compact group with |G : Z(G)| = n,
where n is a positive integer. Then |G′|−1 < cp(G).

Proof. A famous bound of Wiegold (see [8, p.102 (2)]) shows that, if
|G : Z(G)| is finite, then |G′| is finite as well. Now, we can easily observe that
the length of every conjugacy class is bounded above by the order of derived
subgroup G′ for every element x ∈ G. This means |G : CG(x)| ≤ |G′| for all
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x ∈ G. By Lemma 2.2, µ(CG(x)) ≥ |G′|−1 for each element x ∈ G. Moreover,
if |G : Z(G)| = n, then we may write G as the union of n distinct cosets

G = Z(G) ∪ x1Z(G) ∪ x2Z(G) ∪ . . . ∪ xn−1Z(G)

and so µ(Z(G)) = 1/n. Thus we will have

cp(G) =
∫
G
µ(CG(x))dµ(x) =

∫
Z(G)

µ(CG(x))dµ(x) +
∫
x1Z(G)

µ(CG(x))dµ(x)+

· · ·+
∫
xn−1Z(G)

µ(CG(x))dµ(x) = µ(Z(G)) +
∑n−1

i=1

∫
xiZ(G)

µ(CG(x))dµ(x)

≥ 1
n

+
∑n−1

i=1

∫
xiZ(G)

|G′|−1dµ(x) > 1
n
|G′|−1 + n−1

n
|G′|−1 = |G′|−1. ♦

3. Proofs of Theorems A and B

This Section contains our main results with some instructive examples.

Proof of Theorem A. (i)⇒(ii). From [6, Theorem 9.24], G = Z0(G)G′

so that G′ is isomorphic as compact group to G/Z0(G). Now the property to
be a p-elementary abelian group of rank 2 is invariant under isomorphisms of
compact groups. Then the result follows.

(ii)⇒(iii). Again from [6, Theorem 9.24] we have that G′ is isomorphic to
G/Z0(G) and so G/Z0(G) is a p-elementary abelian group of rank 2. Since
Z0(G) ≤ Z(G) and the class of p-elementary abelian groups is closed with re-
spect to forming subgroups, images and extensions of its members (see [8]), we
conclude that G/Z(G) is a p-elementary abelian group of rank 2. Now Lemma
2.3 gives the required bound.

(iii)⇒(i). Assume that cp(G) = p2+p−1
p3

and G/Z0(G) is not a p-elementary

abelian group of rank 2. By assumption G/Z0(G) is a p-group. So, if G/Z0(G)
has order 1 or p, then it is cyclic. Since Z0(G) ≤ Z(G), also G/Z(G) is cyclic.
It follows that G is abelian and there is a contradiction. Thus |G : Z0(G)| ≥ p2.
If |G : Z0(G)| = p2, then G/Z0(G) is an abelian of order p2 and it is either
cyclic of order p2 or a p-elementary abelian group of rank 2. In the first case
we obtain again a contradiction and in the second case we finish. Now suppose
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that |G : Z0(G)| > p2. Using [6, Theorem 9.24 (ii)] and Lemma 2.5, we have

cp(G) =
∫
G
µ(CG(x))dµ(x) =

∫
Z0(G)G′

µ(CG(x))dµ(x)

=
∫
Z0(G)

µ(CG(x))dµ(x) +
∫
G′
µ(CG(x))dµ(x)−

∫
G′∩Z0(G)

µ(CG(x))dµ(x)

=
∫
Z0(G)

µ(CG(x))dµ(x) +
∫
G′
µ(CG(x))dµ(x)

=
∫
Z0(G)

µ(CG(x))dµ(x) +
∫
G′\Z0(G)

µ(CG(x))dµ(x)

≤ µ(Z0(G)) + (µ(G′)− µ(Z0(G))) = µ(G′) = µ(G/Z0(G)).

But Z0(G) is a closed normal subgroup of G with |G : Z0(G)| > p2, then

Lemma 2.2 implies µ(G/Z0(G)) < 1
p2

. Now the relation p2+p−1
p3

< 1
p2

gives a
contradiction and the result follows. ♦

Proof of Theorem B. The finiteness of G/Z(G) implies the finiteness
of G′ by a famous Schur’s Lemma (see [8, Theorem 4.12]), so there are no
problems to consider the maximum number of elements in a conjugacy class
of G [8, Theorem 4.35].

Lemma 2.7, combined with [4, Theorem 4 (ii)] and Proposition 2.4, implies

|G′|−1 < cp(G) < cp(G/Z(G)) ≤

cp(F (G/Z(G)))
1
2 |G/Z(G) : F (G/Z(G))|−

1
2 ≤ |G/Z(G) : F (G/Z(G))|−

1
2 .

On the other hand, the bound of Wiegold [8, Chapter 4, p.126-127] gives

(∗) d−
1
2
(1+log2d) ≤ |G′|−1,

then (i) is proved.
Lemma 2.7, combined with [4, Theorem 8 (i)] and Proposition 2.4, gives

|G′|−1 < cp(G) < cp(G/Z(G)) < log2(|G/Z(G) : sol(G/Z(G))|)−
1
3 .

As before we use (∗) and (ii) follows.
Lemma 2.7, combined with [4, Theorem 9] and Proposition 2.4, gives

|G′|−1 < cp(G) < cp(G/Z(G)) ≤ |G/Z(G) : sol(G/Z(G))|−
1
2 .

As before we use (∗) and (iii) follows.
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Lemma 2.7, combined with [4, Theorem 12 (i)] and Proposition 2.4, gives

|G′|−1 < cp(G) < cp(G/Z(G)) ≤ 4l − 7

2l+1
.

As before we use (∗) and (iv) follows.
Lemma 2.7, combined with [4, Theorem 12 (ii)] and Proposition 2.4, gives

|G′|−1 < cp(G) < cp(G/Z(G)) ≤ pl + pl−1 − 1

p2l−1
.

Now the bound [8, p.102] gives

(∗∗) p−
1
2
m(m−1) ≤ |G′|−1,

then (v) follows. ♦

The conditions (∗) and (∗∗) in the proof of Theorem B are classical restrictions
on |G′| (see [9]) of an infinite group G. Recent developments can be found in
literature: for instance, [9] improves (∗) using techniques of Combinatorial
Group Theory (see [9, Theorems 1.1, 1.3, 1.4]). The same authors of [9] have
continued to improve these bounds during the last twenty years.

Example 3.1. Let n be a positive integer and G = E × Tn, where Tn

is the n-dimensional torus group and E is a finite non-abelian group. See [6,
pp.11–17] and [6, Proposition 2.42] for details. Of course, G is a compact group
and if we know cp(E), then cp(G) = cp(E)cp(Tn) = cp(E) by an application
of Lemma 2.1. This means that informations on cp(G) can be deduced from
those on cp(E). Note that cp(E) is well known by [1, 3, 4, 5, 7, 10], since E is
a finite group. This construction gives a source of examples both for Theorem
A and Theorem B. ♦

References

1. P. Erdös and P. Turan, On some problems of statistical group theory,
Acta Math. Acad. Sci. Hung. 19 (1968), 413–435.

2. A. Erfanian and R. Kamyabi-Gol, On the mutually n-tuples in compact
groups, Int. J. Algebra (6) Vol. 1 (2007), 251–262.

3. P. X. Gallagher, The number of conjugacy classes in a finite group, Math.
Z. 118 (1970), 175–179.



Detecting the Commuting Probability of the Derived Subgroup 9

4. R. M. Guralnick and G. R. Robinson, On the commuting probability in
finite groups, J. Algebra 300 (2006), 509–528.

5. W. H. Gustafson, What is the probability that two groups elements com-
mute? , Amer. Math. Monthly 80 (1973), 1031–1034.

6. K. H. Hofmann, and S. A. Morris, The Structure of Compact Groups, de
Gruyter, Berlin, New York, 1998.

7. M. S. Lucido and M. R. Pournaki, Elements with Square Roots in Finite
Groups, Algebra Colloq. 12 (2005), 677–690.

8. D. J. Robinson, Finiteness conditions and generalized soluble groups, vol.
I and vol.II, Springer Verlag, Berlin, 1972.

9. D. Segal and A. Shalev, On groups with bounded conjugacy classes,
Quart. J. Math. Oxford (2), 50 (1999), 505–516.

10. G. J. Sherman, What is the probability an automorphism fixes a group
element?, Amer. Math. Monthly 82 (1975), 261-264.

Received: Month xx, 200x


